当前位置: 首页 > 生活常识 >

一文搞懂LRU lru全称 是什么?

632次浏览     发布时间:2024-03-11 07:17:19    

理解LRU

设计一个LRU,你得知道什么是LRU吧?

LRU,英文全称为Least Recently Used,翻译过来就是最近最久未使用算法,是一种常用的页面置换算法

说起页面置换算法,这就是跟OS关系比较大的了,我们都知道内存的速度比较快,但是内存的容量是非常有限的,不可能给所有页面装到内存中,所以就需要一个策略将常用的页面预放到内存中。

但是吧,谁也不知道进程下次会访问哪个内存,并不能很有效的知道(我们在当前并没有预测未来的功能),所以有些页面置换算法只是理想化但是没法真实实现的(没错就是最佳置换算法(Optimal)),然后常见必回的算法就是FIFO(先进先出)和LRU(最近最久未使用)。

LRU理解不难,就是维护一个有固定大小的容器,核心就是get()和put()两个操作。

我们先看一下LRU会有的两个操作:

初始化:LRUCache(int capacity) ,以正整数作为容量 capacity 初始化 LRU 缓存。

查询:get(int key),从自己的设计的数据结构中查找是否有当前key对应的value,如果有那么返回对应值并且要将key更新记录为最近使用,如果没有返回-1。

插入/更新:put(int key,int value),可能是插入一个key-value,也可能是更新一个key-value,如果容器中已经存才这个key-value那么只需要更新对应value值,并且标记成最新。如果容器不存在这个值,那么要考虑容器是否满了,如果满了要先删除最久未使用的那对key-value。

这里的流程可以给大家举个例子

这个过程如下:


大家容易忽略的细节有:

  • put()存在更新的操作,例如put(3,3),put(3,4)会更新key为3的操作。
  • get()可能查询不到,但是查询到也会更新最久未使用的顺序
  • 如果容器未使用满,那么put可能更新可能插入,但是不会删除;如果容器满了并且put插入,就要考虑删除最久未使用的key-value了。

对于上面的这么一个规则,我们该如何处理呢?

如果单单用一个List类似的列表,可以顺序存储键值对,在List前面的(0下标为前)我们认为它是比较久的,在List后我们认为它是比较新的。我们考虑下各种操作可能会这样设计:

如果来get操作:

遍历List一个个比对,查看是否有该key的键值对,如果有直接返回对应key的value,如果没有那么返回-1.

如果来put操作:

遍历List,如果有该key的键值对,那么果断删除这个key-value,最后在末尾统一插入该键值对。

如果没有对应的key并且List容器已经到达最满了,那么果断删除第一个位置的key-value。

用List可能需要两个(一个存key一个存value),或者一个存Node节点(key,value为属性)的List,考虑下这个时间复杂度:

put操作:O(n),get操作:O(n) 两个操作都需要枚举列表线性复杂度,效率属实有点拉胯,肯定不行,这样的代码我就不写了。

哈希初优化

从上面的分析来看,我们已经可以很自信的将LRU写出来了,不过现在要考虑的是一个优化的事情。

如果说我们将程序中引入哈希表,那么肯定会有一些优化的。用哈希表存储key-value,查询是否存在的操作都能优化为O(1),但是删除或者插入或者更新位置的复杂度可能还是O(n),我们一起分析一下:

最久未使用一定是一个有序的序列来储存,要么是顺序表(数组)要么是链表,如果是数组实现的ArrayList存储最久未使用这个序列。

如果是ArrayList进行删除最久未使用(第一个)key-value,新的key被命中变成最新被使用(先删除然后插入末尾)操作都是O(n)。

同理如果是LinkedList的一些操作大部分也是O(n)的,像删除第一个元素这个是因为数据结构原因O(1)。

你发现自己的优化空间其实非常非常小,但是确实还是有进步的,只是被卡住不知道双O(1)的操作究竟怎么优化,这里面我把这个版本代码放出来,大家可以参考一下(如果面试问到实在不会可以这么写)

哈希+双链表

上面我们已经知道用哈希能够直接查到有木有这个元素,但是苦于删除!用List都很费力。

更详细的说,是苦于List的删除操作,Map的删除插入还是很高效的。


在上面这种情况,我们希望的就是能够快速删除List中任意一个元素,并且效率很高,如果借助哈希只能最多定位到,但是无法删除啊!该怎么办呢?

哈希+双链表啊!

我们将key-val的数据存到一个Node类中,然后每个Node知道左右节点,在插入链表的时候直接存入Map中,这样Map在查询的时候可以直接返回该节点,双链表知道左右节点可以直接将该节点在双链表中删除。

当然,为了效率,这里实现的双链表带头结点(头指针指向一个空节点防止删除等异常情况)和尾指针。

对于这个情况,你需要能够手写链表和双链表啦,双链表的增删改查已经写过清清楚楚,小伙伴们不要担心,这里我已经整理好啦

也就是你可以通过HashMap直接得到在双链表中对应的Node,然后根据前后节点关系删除,期间要考虑的一些null、尾指针删除等等特殊情况即可。

具体实现的代码为:

就这样,一个get和put都是O(1)复杂度的LRU写出来啦!

相关文章